REDUCE

16.40 MODSR: Modular solve and roots

This package supports solve (M_SOLVE) and roots (M_ROOTS) operators for modular polynomials and modular polynomial systems. The moduli need not be primes. M_SOLVE requires a modulus to be set. M_ROOTS takes the modulus as a second argument. For example:

on modular; setmod 8;  
m_solve(2x=4);            ->  {{X=2},{X=6}}  
m_solve({x^2-y^3=3});  
    ->  {{X=0,Y=5}, {X=2,Y=1}, {X=4,Y=5}, {X=6,Y=1}}  
m_solve({x=2,x^2-y^3=3}); ->  {{X=2,Y=1}}  
off modular;  
m_roots(x^2-1,8);         ->  {1,3,5,7}  
m_roots(x^3-x,7);         ->  {0,1,6}

The operator legendre_symbol(a,p) denotes the Legendre symbol

(  )
  a-     p-21
  p  ≡  a    (mod  p)

which, by its very definition can only have one of the values {-1,0,1}.

There is no further documentation for this package.

Author: Herbert Melenk.