Up Next Prev PrevTail Tail

### 16.77 ZEILBERG: Indefinite and definitesummation

This package is a careful implementation of the Gosper and Zeilberger algorithms for indefinite and definite summation of hypergeometric terms, respectively. Extensions of these algorithms are also included that are valid for ratios of products of powers, factorials, Γ function terms, binomial coefficients, and shifted factorials that are rational-linear in their arguments.

Authors: Gregor Stölting and Wolfram Koepf.

#### 16.77.1 Introduction

This package is a careful implementation of the Gosper36 and Zeilberger algorithms for indefinite, and definite summation of hypergeometric terms, respectively. Further, extensions of these algorithms given by the first author are covered. An expression ak is called a hypergeometric term (or closed form), if ak∕ak-1 is a rational function with respect to k. Typical hypergeometric terms are ratios of products of powers, factorials, Γ function terms, binomial coefficients, and shifted factorials (Pochhammer symbols) that are integer-linear in their arguments.

The extensions of Gosper’s and Zeilberger’s algorithm mentioned in particular are valid for ratios of products of powers, factorials, Γ function terms, binomial coefficients, and shifted factorials that are rational-linear in their arguments.

#### 16.77.2 Gosper Algorithm

The Gosper algorithm [?] is a decision procedure, that decides by algebraic calculations whether or not a given hypergeometric term ak has a hypergeometric term antidifference gk, i. e. gk - gk-1 = ak with rational gk∕gk-1, and returns gk if the procedure is successful, in which case we call ak Gosper-summable. Otherwise no hypergeometric term antidifference exists. Therefore if the Gosper algorithm does not return a closed form solution, it has proved that no such solution exists, an information that may be quite useful and important. The Gosper algorithm is the discrete analogue of the Risch algorithm for integration in terms of elementary functions.

Any antidifference is uniquely determined up to a constant, and is denoted by

Finding gk given ak is called indefinite summation. The antidifference operator Σ is the inverse of the downward difference operator ak = ak - ak-1. There is an analogous summation theory corresponding to the upward difference operator Δak = ak+1 - ak.

In case, an antidifference gk of ak is known, any sum

can be easily calculated by an evaluation of g at the boundary points like in the integration case. Note, however, that the sum

 (16.96)

e. g. is not of this type since the summand (n k) depends on the upper boundary point n explicitly. This is an example of a definite sum that we consider in the next section.

Our package supports the input of powers (a^k), factorials (factorial(k)), Γ function terms (gamma(a)), binomial coefficients (binomial(n,k)), shifted factorials (pochhammer(a,k)= a(a + 1)(a + k - 1) = Γ(a + k)Γ(a)), and partially products (prod(f,k,k1,k2)). It takes care of the necessary simplifications, and therefore provides you with the solution of the decision problem as long as the memory or time requirements are not too high for the computer used.

#### 16.77.3 Zeilberger Algorithm

The (fast) Zeilberger algorithm [?][?] deals with the definite summation of hypergeometric terms. Zeilberger’s paradigm is to find (and return) a linear homogeneous recurrence equation with polynomial coefficients (called holonomic equation) for an infinite sum

the summation to be understood over all integers k, if f(n,k) is a hypergeometric term with respect to both k and n. The existence of a holonomic recurrence equation for s(n) is then generally guaranteed.

If one is lucky, and the resulting recurrence equation is of first order

s(n) turns out to be a hypergeometric term, and a closed form solution can be easily established using a suitable initial value, and is represented by a ratio of Pochhammer or Γ function terms if the polynomials p, and q can be factored.

Zeilberger’s algorithm does not guarantee to find the holonomic equation of lowest order, but often it does.

If the resulting recurrence equation has order larger than one, this information can be used for identification purposes: Any other expression satisfying the same recurrence equation, and the same initial values, represents the same function.

Note that a definite sum k=m1m2f(n,k) is an infinite sum if f(n,k) = 0 for k < m1 and k > m2. This is often the case, an example of which is the sum (16.96) considered above, for which the hypergeometric recurrence equation 2s(n - 1) - s(n) = 0 is generated by Zeilberger’s algorithm, leading to the closed form solution s(n) = 2n.

Definite summation is trivial if the corresponding indefinite sum is Gosper-summable analogously to the fact that definite integration is trivial as soon as an elementary antiderivative is known. If this is not the case, the situation is much more difficult, and it is therefore quite remarkable and non-obvious that Zeilberger’s method is just a clever application of Gosper’s algorithm.

Our implementation is mainly based on [?] and [?]. More examples can be found in [?], [?], [?], and [?] many of which are contained in the test file zeilberg.tst.

#### 16.77.4 REDUCE operator GOSPER

The ZEILBERG package must be loaded by:

The gosper operator is an implementation of the Gosper algorithm.

• gosper(a,k) determines a closed form antidifference. If it does not return a closed form solution, then a closed form solution does not exist.
• gosper(a,k,m,n) determines

using Gosper’s algorithm. This is only successful if Gosper’s algorithm applies.

Example:

2: gosper((-1)^(k+1)*(4*k+1)*factorial(2*k)/
(factorial(k)*4^k*(2*k-1)*factorial(k+1)),k);

k
- ( - 1) *factorial(2*k)
------------------------------------
2*k
2   *factorial(k + 1)*factorial(k)

This solves a problem given in SIAM Review ([?], Problem 94–2) where it was asked to determine the infinite sum

((2k - 1)!! = 1 3(2k - 1) = ). The above calculation shows that the summand is Gosper-summable, and the limit S = 1 is easily established using Stirling’s formula.

The implementation solves further deep and difficult problems some examples of which are:

3:  gosper(sub(n=n+1,binomial(n,k)^2/binomial(2*n,n))-
binomial(n,k)^2/binomial(2*n,n),k);

2
((binomial(n + 1,k) *binomial(2*n,n)

2
- binomial(2*(n + 1),n + 1)*binomial(n,k) )*(2*k - 3*n - 1)

2                                       3      2
*(k - n - 1) )/((2*(2*(n + 1) - k)*(2*n + 1)*k - 3*n  - 7*n  - 5*n

- 1)*binomial(2*(n + 1),n + 1)*binomial(2*n,n))

4: gosper(binomial(k,n),k);

(k + 1)*binomial(k,n)
-----------------------
n + 1

5: gosper((-25+15*k+18*k^2-2*k^3-k^4)/
(-23+479*k+613*k^2+137*k^3+53*k^4+5*k^5+k^6),k);

2
- (2*k  - 15*k + 8)*k
----------------------------
3      2
23*(k  + 4*k  + 27*k + 23)

The Gosper algorithm is not capable to give antidifferences depending on the harmonic numbers

e. g.  kHk = (k + 1)(Hk+1 - 1), but, is able to give a proof, instead, for the fact that Hk does not possess a closed form evaluation:

6: gosper(1/k,k);

***** Gosper algorithm: no closed form solution exists

The following code gives the solution to a summation problem proposed in Gosper’s original paper [?]. Let

Then a closed form solution for

is found by the definitions

7: operator ff,gg\$

8: let {ff(~k+~m) => ff(k+m-1)*(c*(k+m)^2+b*(k+m)+a)
when (fixp(m) and m>0),
ff(~k+~m) => ff(k+m+1)/(c*(k+m+1)^2+b*(k+m+1)+a)
when (fixp(m) and m<0)}\$

9: let {gg(~k+~m) => gg(k+m-1)*(c*(k+m)^2+b*(k+m)+e)
when (fixp(m) and m>0),
gg(~k+~m) => gg(k+m+1)/(c*(k+m+1)^2+b*(k+m+1)+e)
when (fixp(m) and m<0)}\$

and the calculation

10: gosper(ff(k-1)/gg(k),k);

ff(k)
---------------
(a - e)*gg(k)

11: clear ff,gg\$

Similarly closed form solutions of k for positive integers m can be obtained, as well as of k for

and for analogous expressions of higher degree polynomials.

#### 16.77.5 REDUCE operator EXTENDED_GOSPER

The extended_gosper operator is an implementation of an extended version of Gosper’s algorithm given by Koepf [?].

• extended_gosper(a,k) determines an antidifference gk of ak whenever there is a number m such that hk - hk-m = ak, and hk is an m-fold hypergeometric term, i. e.

If it does not return a solution, then such a solution does not exist.

• extended_gosper(a,k,m) determines an m-fold antidifference hk of ak, i. e. hk - hk-m = ak, if it is an m-fold hypergeometric term.

Examples:

12: extended_gosper(binomial(k/2,n),k);

k                         k - 1
(k + 2)*binomial(---,n) + (k + 1)*binomial(-------,n)
2                           2
-------------------------------------------------------
2*(n + 1)

13: extended_gosper(k*factorial(k/7),k,7);

k
(k + 7)*factorial(---)
7

#### 16.77.6 REDUCE operator SUMRECURSION

The sumrecursion operator is an implementation of the (fast) Zeilberger algorithm.

• sumrecursion(f,k,n) determines a holonomic recurrence equation for

with respect to n, applying extended_sumrecursion if necessary, see § 16.77.7. The resulting expression equals zero.

• sumrecursion(f,k,n,j) searches for a holonomic recurrence equation of order j. This operator does not use extended_sumrecursion automatically. Note that if j is too large, the recurrence equation may not be unique, and only one particular solution is returned.

A simple example deals with Equation (16.96)37

14: sumrecursion(binomial(n,k),k,n);

2*sum(n - 1) - sum(n)

The whole hypergeometric database of the Vandermonde, Gauß, Kummer, Saalschütz, Dixon, Clausen and Dougall identities (see [?]), and many more identities (see e. g. [?]), can be obtained using sumrecursion. As examples, we consider the difficult cases of Clausen and Dougall:

15: summand:=factorial(a+k-1)*factorial(b+k-1)/(factorial(k)*
factorial(-1/2+a+b+k))*factorial(a+n-k-1)*factorial(b+n-k-1)/
(factorial(n-k)*factorial(-1/2+a+b+n-k))\$

16: sumrecursion(summand,k,n);

(2*a + 2*b + 2*n - 1)*(2*a + 2*b + n - 1)*sum(n)*n

- 2*(2*a + n - 1)*(a + b + n - 1)*(2*b + n - 1)*sum(n - 1)

17: summand:=pochhammer(d,k)*pochhammer(1+d/2,k)*pochhammer(d+b-a,k)*
pochhammer(d+c-a,k)*pochhammer(1+a-b-c,k)*pochhammer(n+a,k)*
pochhammer(-n,k)/(factorial(k)*pochhammer(d/2,k)*
pochhammer(1+a-b,k)*pochhammer(1+a-c,k)*pochhammer(b+c+d-a,k)*
pochhammer(1+d-a-n,k)*pochhammer(1+d+n,k))\$

18: sumrecursion(summand,k,n);

(2*a - b - c - d + n)*(b + n - 1)*(c + n - 1)*(d + n)*sum(n - 1) +

(a - b - c - d - n + 1)*(a - b + n)*(a - c + n)*(a - d + n - 1)

*sum(n)

corresponding to the statements

and

(compare next section), respectively.

Other applications of the Zeilberger algorithm are connected with the verification of identities. To prove the identity

e. g., we may prove that both sums satisfy the same recurrence equation

19: sumrecursion(binomial(n,k)^3,k,n);

2                                  2                      2
(7*n  - 7*n + 2)*sum(n - 1) + 8*(n - 1) *sum(n - 2) - sum(n)*n

20: sumrecursion(binomial(n,k)^2*binomial(2*k,n),k,n);

2                                  2                      2
(7*n  - 7*n + 2)*sum(n - 1) + 8*(n - 1) *sum(n - 2) - sum(n)*n

and finally check the initial conditions:

21: sub(n=0,k=0,binomial(n,k)^3);

1

22: sub(n=0,k=0,binomial(n,k)^2*binomial(2*k,n));

1

23: sub(n=1,k=0,binomial(n,k)^3)+sub(n=1,k=1,binomial(n,k)^3);

2

24: sub(n=1,k=0,binomial(n,k)^2*binomial(2*k,n))+
sub(n=1,k=1,binomial(n,k)^2*binomial(2*k,n));

2

#### 16.77.7 REDUCE operator EXTENDED_SUMRECURSION

The extended_sumrecursion operator is an implementation of an extension of the (fast) Zeilberger algorithm given by Koepf [?].

• extended_sumrecursion(f,k,n,m,l) determines a holonomic recurrence equation for sum(n) = k=-∞f(n,k) with respect to n if f(n,k) is an (m,l)-fold hypergeometric term with respect to (n,k), i. e.

are rational functions with respect to both n and k. The resulting expression equals zero.

• sumrecursion(f,k,n) invokes extended_sumrecursion(f,k,n,m,l) with suitable values m and l, and covers therefore the extended algorithm completely.

Examples:

25: extended_sumrecursion(binomial(n,k)*binomial(k/2,n),k,n,1,2);

sum(n - 1) + 2*sum(n)

which can be obtained automatically by

26: sumrecursion(binomial(n,k)*binomial(k/2,n),k,n);

sum(n - 1) + 2*sum(n)

Similarly, we get

27: extended_sumrecursion(binomial(n/2,k),k,n,2,1);

2*sum(n - 2) - sum(n)

28: sumrecursion(binomial(n/2,k),k,n);

2*sum(n - 2) - sum(n)

29: sumrecursion(hyperterm({a,b,a+1/2-b,1+2*a/3,-n},
{2*a+1-2*b,2*b,2/3*a,1+a+n/2},4,k)/(factorial(n)*2^(-n)/
factorial(n/2))/hyperterm({a+1,1},{a-b+1,b+1/2},1,n/2),k,n);

sum(n - 2) - sum(n)

In the last example, the progam chooses m = 2, and l = 1 to derive the resulting recurrence equation (see [?], Table 3, (1.3)).

#### 16.77.8 REDUCE operator HYPERRECURSION

Sums to which the Zeilberger algorithm applies, in general are special cases of the generalized hypergeometric function

with upper parameters {a1,a2,,ap}, and lower parameters {b1,b2,,bq}. If a recursion for a generalized hypergeometric function is to be established, you can use the following REDUCE operator:

• hyperrecursion(upper,lower,x,n) determines a holonomic recurrence equation with respect to n for pFq, where upper= {a1,a2,,ap} is the list of upper parameters, and lower= {b1,b2,,bq} is the list of lower parameters depending on n. If Zeilberger’s algorithm does not apply, extended_sumrecursion of § 16.77.7 is used.
• hyperrecursion(upper,lower,x,n,j) (j ) searches only for a holonomic recurrence equation of order j. This operator does not use extended_sumrecursion automatically.

Therefore

30: hyperrecursion({-n,b},{c},1,n);

(b - c - n + 1)*sum(n - 1) + (c + n - 1)*sum(n)

establishes the Vandermonde identity

whereas

31: hyperrecursion({d,1+d/2,d+b-a,d+c-a,1+a-b-c,n+a,-n},
{d/2,1+a-b,1+a-c,b+c+d-a,1+d-a-n,1+d+n},1,n);

(2*a - b - c - d + n)*(b + n - 1)*(c + n - 1)*(d + n)*sum(n - 1) +

(a - b - c - d - n + 1)*(a - b + n)*(a - c + n)*(a - d + n - 1)

*sum(n)

proves Dougall’s identity, again.

If a hypergeometric expression is given in hypergeometric notation, then the use of hyperrecursion is more natural than the use of sumrecursion.

Moreover you may use the REDUCE operator

• hyperterm(upper,lower,x,k) that yields the hypergeometric term

with upper parameters upper= {a1,a2,,ap}, and lower parameters lower= {b1,b2,,bq}

in connection with hypergeometric terms.

The operator sumrecursion can also be used to obtain three-term recurrence equations for systems of orthogonal polynomials with the aid of known hypergeometric representations. By ([?], (2.7.11a)), the discrete Krawtchouk polynomials kn(p)(x,N) have the hypergeometric representation

and therefore we declare

32: krawtchoukterm:=
(-1)^n*p^n*binomial(NN,n)*hyperterm({-n,-x},{-NN},1/p,k)\$

and get the three three-term recurrence equations

33: sumrecursion(krawtchoukterm,k,n);

((2*p - 1)*n - nn*p - 2*p + x + 1)*sum(n - 1)

- (n - nn - 2)*(p - 1)*sum(n - 2)*p - sum(n)*n

34: sumrecursion(krawtchoukterm,k,x);

(2*(x - 1)*p + n - nn*p - x + 1)*sum(x - 1)

- ((x - 1) - nn)*sum(x)*p - (p - 1)*(x - 1)*sum(x - 2)

35: sumrecursion(krawtchoukterm,k,NN);

((p - 2)*nn + n + x + 1)*sum(nn - 1) + (n - nn)*(p - 1)*sum(nn)

+ (nn - x - 1)*sum(nn - 2)

with respect to the parameters n, x, and N respectively.

#### 16.77.9 REDUCE operator HYPERSUM

With the operator hypersum, hypergeometric sums are directly evaluated in closed form whenever the extended Zeilberger algorithm leads to a recurrence equation containing only two terms:

• hypersum(upper,lower,x,n) determines a closed form representation for pFq, where upper= {a1,a2,,ap} is the list of upper parameters, and lower= {b1,b2,,bq} is the list of lower parameters depending on n. The result is given as a hypergeometric term with respect to n.

If the result is a list of length m, we call it m-fold symmetric, which is to be interpreted as follows: Its jth part is the solution valid for all n of the form n = mk + j - 1(k 0). In particular, if the resulting list contains two terms, then the first part is the solution for even n, and the second part is the solution for odd n.

Examples [?]:

36: hypersum({a,1+a/2,c,d,-n},{a/2,1+a-c,1+a-d,1+a+n},1,n);

pochhammer(a - c - d + 1,n)*pochhammer(a + 1,n)
-------------------------------------------------
pochhammer(a - c + 1,n)*pochhammer(a - d + 1,n)

37: hypersum({a,1+a/2,d,-n},{a/2,1+a-d,1+a+n},-1,n);

pochhammer(a + 1,n)
-------------------------
pochhammer(a - d + 1,n)

Note that the operator togamma converts expressions given in factorial-Γ-binomial-Pochhammer notation into a pure Γ function representation:

38: togamma(ws);

gamma(a - d + 1)*gamma(a + n + 1)
-----------------------------------
gamma(a - d + n + 1)*gamma(a + 1)

Here are some m-fold symmetric results:

39: hypersum({-n,-n,-n},{1,1},1,n);

n/2             2   n               1   n
( - 27)   *pochhammer(---,---)*pochhammer(---,---)
3   2               3   2
{----------------------------------------------------,
n  2
factorial(---)
2
0}

40: hypersum({-n,n+3*a,a},{3*a/2,(3*a+1)/2},3/4,n);

2   n               1   n
pochhammer(---,---)*pochhammer(---,---)
3   3               3   3
{-----------------------------------------------------,
3*a + 2   n               3*a + 1   n
pochhammer(---------,---)*pochhammer(---------,---)
3      3                  3      3
0,

0}

These results correspond to the formulas (compare [?])

and

#### 16.77.10 REDUCE operator SUMTOHYPER

With the operator sumtohyper, sums given in factorial-Γ-binomial-Pochhammer notation are converted into hypergeometric notation.

• sumtohyper(f,k) determines the hypergeometric representation of k=-∞f k, i. e. its output is c*hypergeometric(upper,lower,x), corresponding to the representation

where upper= {a1,a2,,ap} and lower= {b1,b2,,bq} are the lists of upper and lower parameters.

Examples:

41: sumtohyper(binomial(n,k)^3,k);

hypergeometric({ - n, - n, - n},{1,1},-1)

42: sumtohyper(binomial(n,k)/2^n-sub(n=n-1,binomial(n,k)/2^n),k);

- n + 2               - n
- hypergeometric({----------, - n,1},{1,------},-1)
2                   2
------------------------------------------------------
n
2

#### 16.77.11 Simplification Operators

For the decision that an expression ak is a hypergeometric term, it is necessary to find out whether or not ak∕ak-1 is a rational function with respect to k. For the purpose to decide whether or not an expression involving powers, factorials, Γ function terms, binomial coefficients, and Pochhammer symbols is a hypergeometric term, the following simplification operators can be used:

• simplify_gamma(f) simplifies an expression f involving only rational, powers and Γ function terms according to a recursive application of the simplification rule Γ(a + 1) = aΓ(a) to the expression tree. Since all Γ arguments with integer difference are transformed, this gives a decision procedure for rationality for integer-linear Γ term product ratios.
• simplify_combinatorial(f) simplifies an expression f involving powers, factorials, Γ function terms, binomial coefficients, and Pochhammer symbols by converting factorials, binomial coefficients, and Pochhammer symbols into Γ function terms, and applying simplify_gamma to its result. If the output is not rational, it is given in terms of Γ functions. If you prefer factorials you may use
• gammatofactorial (rule) converting Γ function terms into factorials using Γ(x) (x - 1)!.
• simplify_gamma2(f) uses the duplication formula of the Γ function to simplify f.
• simplify_gamman(f,n) uses the multiplication formula of the Γ function to simplify f.

The use of simplify_combinatorial(f) is a safe way to decide the rationality for any ratio of products of powers, factorials, Γ function terms, binomial coefficients, and Pochhammer symbols.

Example:

43: simplify_combinatorial(sub(k=k+1,krawtchoukterm)/krawtchoukterm);

(k - n)*(k - x)
--------------------
(k - nn)*(k + 1)*p

From this calculation, we see again that the upper parameters of the hypergeometric representation of the Krawtchouk polynomials are given by {-n,-x}, its lower parameter is {-N}, and the argument of the hypergeometric function is 1∕p.

Other examples are

44: simplify_combinatorial(binomial(n,k)/binomial(2*n,k-1));

gamma( - (k - 2*n - 2))*gamma(n + 1)
----------------------------------------
gamma( - (k - n - 1))*gamma(2*n + 1)*k

45: ws where gammatofactorial;

factorial( - k + 2*n + 1)*factorial(n)
----------------------------------------
factorial( - k + n)*factorial(2*n)*k

46: simplify_gamma2(gamma(2*n)/gamma(n));

2*n        2*n + 1
2   *gamma(---------)
2
-----------------------
2*sqrt(pi)

47: simplify_gamman(gamma(3*n)/gamma(n),3);

3*n        3*n + 2          3*n + 1
3   *gamma(---------)*gamma(---------)
3                3
----------------------------------------
2*sqrt(3)*pi

#### 16.77.12 Tracing

If you set

48: on zb_trace;

tracing is enabled, and you get intermediate results, see [?].

Example for the Gosper algorithm:

49: gosper(pochhammer(k-n,n),k);

k - 1
a(k)/a(k-1):= -----------
k - n - 1

Gosper algorithm applicable

p:= 1

q:= k - 1

r:= k - n - 1

degreebound := 0

1
f:= -------
n + 1

Gosper algorithm successful

pochhammer(k - n,n)*k
-----------------------
n + 1

Example for the Zeilberger algorithm:

50: sumrecursion(binomial(n,k)^2,k,n);

2
n
F(n,k)/F(n-1,k):= ----------
2
(k - n)

2
(k - n - 1)
F(n,k)/F(n,k-1):= --------------
2
k

Zeilberger algorithm applicable

applying Zeilberger algorithm for order:= 1

2                                    2    2
p:= zb_sigma(1)*k  - 2*zb_sigma(1)*k*n + zb_sigma(1)*n  + n

2                  2
q:= k  - 2*k*n - 2*k + n  + 2*n + 1

2
r:= k

degreebound := 1

2*k - 3*n + 2
f:= ---------------
n

2        2        2              3      2
- 4*k *n + 2*k  + 8*k*n  - 4*k*n - 3*n  + 2*n
p:= -------------------------------------------------
n

Zeilberger algorithm successful

4*sum(n - 1)*n - 2*sum(n - 1) - sum(n)*n

51: off zb_trace;

#### 16.77.13 Global Variables and Switches

The following global variables and switches can be used in connection with the ZEILBERG package:

• zb_trace, switch; default setting off. Turns tracing on and off.
• zb_direction, variable; settings: down, up; default setting down.

In the case of the Gosper algorithm, either a downward or a forward antidifference is calculated, i. e., gosper finds gk with either

respectively.

In the case of the Zeilberger algorithm, either a downward or an upward recurrence equation is returned. Example:

52: zb_direction:=up\$

53: sumrecursion(binomial(n,k)^2,k,n);

sum(n + 1)*n + sum(n + 1) - 4*sum(n)*n - 2*sum(n)

54: zb_direction:=down\$

• zb_order, variable; settings: any nonnegative integer; default setting 5. Gives the maximal order for the recurrence equation that sumrecursion searches for.
• zb_factor, switch; default setting on. If off, the factorization of the output usually producing nicer results is suppressed.
• zb_proof, switch; default setting off. If on, then several intermediate results are stored in global variables:
• gosper_representation, variable; default setting nil.

If a gosper command is issued, and if the Gosper algorithm is applicable, then the variable gosper_representation is set to the list of polynomials (with respect to k) {p,q,r,f} corresponding to the representation

see [?]. Examples:

55: on zb_proof;

56: gosper(k*factorial(k),k);

(k + 1)*factorial(k)

57: gosper_representation;

{k,k,1,1}

58: gosper(
1/(k+1)*binomial(2*k,k)/(n-k+1)*binomial(2*n-2*k,n-k),k);

((2*k - n + 1)*(2*k + 1)*binomial( - 2*(k - n), - (k - n))

*binomial(2*k,k))/((k + 1)*(n + 2)*(n + 1))

59: gosper_representation;

{1,

(2*k - 1)*(k - n - 2),

(2*k - 2*n - 1)*(k + 1),

- (2*k - n + 1)
------------------}
(n + 2)*(n + 1)

• zeilberger_representation, variable; default setting nil.

If a sumrecursion command is issued, and if the Zeilberger algorithm is successful, then the variable zeilberger_representation is set to the final Gosper representation used, see [?].

#### 16.77.14 Messages

The following messages may occur:

• ***** Gosper algorithm: no closed form solution exists

Example input:

gosper(factorial(k),k).

• ***** Gosper algorithm not applicable

Example input:

gosper(factorial(k/2),k).

The term ratio ak∕ak-1 is not rational.

• ***** illegal number of arguments

Example input:

gosper(k).

• ***** Zeilberger algorithm fails. Enlarge zb_order

Example input:

sumrecursion(binomial(n,k)*binomial(6*k,n),k,n)

For this example a setting zb_order:=6 is needed.

• ***** Zeilberger algorithm not applicable

Example input:

sumrecursion(binomial(n/2,k),k,n)

One of the term ratios f(n,k)∕f(n - 1,k) or f(n,k)∕f(n,k - 1) is not rational.

• ***** SOLVE given inconsistent equations

You can ignore this message that occurs with Version 3.5.

#### Bibliography

[1]   Gosper Jr., R. W.: Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 75, 1978, 40–42.

[2]   Koepf, W.: Algorithms for the indefinite and definite summation. Konrad-Zuse-Zentrum Berlin (ZIB), Preprint SC 94-33, 1994.

[3]   Koornwinder, T. H.: On Zeilberger’s algorithm and its q-analogue: a rigorous description. J. of Comput. and Appl. Math. 48, 1993, 91–111.

[4]   Nikiforov, A. F., Suslov, S. K, and Uvarov, V. B.: Classical orthogonal polynomials of a discrete variable. Springer-Verlag, Berlin–Heidelberg–New York, 1991.

[5]   Paule, P. and Schorn, M.: A MATHEMATICA version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symbolic Computation, 1994, to appear.

[6]   Problem 94–2, SIAM Review 36, March 1994.

[7]   Strehl, V.: Binomial sums and identities. Maple Technical Newsletter 10, 1993, 37–49.

[8]   Wilf, H. S.: Generatingfunctionology. Academic Press, Boston, 1990.

[9]   Wilf, H. S.: Identities and their computer proofs. “SPICE” Lecture Notes, August 31–September 2, 1993. Anonymous ftp file pub/wilf/lecnotes.ps on the server ftp.cis.upenn.edu.

[10]   Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discrete Math. 80, 1990, 207–211.

[11]   Zeilberger, D.: The method of creative telescoping. J. Symbolic Computation 11, 1991, 195–204.

 Up Next Prev PrevTail Front